


Certificate of Analysis

Kaycha Labs

Matrix: Derivative

Sample:KN20825007-001 Harvest/Lot ID: 13623 Batch#: 0082-2ISX Seed to Sale# N/A Batch Date: 08/19/22 Sample Size Received: 30 ml Total Batch Size: N/A Retail Product Size: 30 ml Ordered : 08/19/22 Sampled : 08/19/22 Completed: 09/02/22 Sampling Method: N/A

This report shall not be reproduced, unless in its entirety, without written approval room kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310. Sue Ferguson Lab Director State License # n/a ISO Accreditation # 17025:2017

Shutingusa

Signature

Kaycha Labs

6000 mg Full Spectrum N/A Matrix : Derivative

PASSED

Certificate of Analysis

Carmens Medicinals

1241 Stirling Rd Suite 101 Dania Beach , FL, 33004, US Telephone: (888) 328-6445 Email: info@carmensmedicinals.com Sample : KN20825007-001 Harvest/Lot ID: 13623 Batch# : 0082-2ISX Sampled : 08/19/22 Ordered : 08/19/22

Sample Size Received : 30 ml Total Batch Size : N/A Completed : 09/02/22 Expires: 09/02/23 Sample Method : SOP Client Method

TESTED

٩

Terpenes

Terpenes	LOD (%)	mg/ml	%	Result (%)	Terpenes		LOD (%)	mg/ml	%	Result (%)
TRANS-CARYOPHYLLENE	0.007	3.538	0.3538		HEXAHYDROTHYMOL		0.007	4.91	0.491	
GUAIOL	0.007	ND	ND		EUCALYPTOL		0.007	0.498	0.0498	
	0.007	2.434	0.2434		ISOBORNEOL		0.007	ND	ND	
LINALOOL	0.007	ND	ND		FARNESENE		0.007	<0.2	< 0.02	
NEROL	0.007	ND	ND		FENCHONE		0.007	ND	ND	
DCIMENE	0.007	<0.2	< 0.02		GAMMA-TERPINENE		0.007	ND	ND	
ALPHA-PHELLANDRENE	0.007	ND	ND		GERANIOL		0.007	ND	ND	
ULEGONE	0.007	<0.2	< 0.02		Analyzed by:	Weight:	E	traction d	ate:	Extracted by:
ABINENE	0.007	ND	ND		2368, 138, 12	1.0179g		3/26/22 10		138
ABINENE HYDRATE	0.007	ND	ND		Analysis Method : SOP.T.40	.090				
ERPINEOL	0.007	ND	ND		Analytical Batch : KN00282					On: 09/02/22 18:02:24
ERPINOLENE	0.007	ND	ND		Instrument Used : E-SHI-10 Running on : N/A	9 Terpenes		E	atch Date	a: 08/25/22 09:59:08
GERANYL ACETATE	0.007	ND	ND		Dilution : 10					
RANS-NEROLIDOL	0.007	ND	ND		Reagent : N/A					
ALENCENE	0.007	ND	ND		Consumables : N/A					
SOPULEGOL	0.007	ND	ND		Pipette : N/A					XXNN
LPHA-HUMULENE	0.007	0.94	0.094		Terpenoid profile screening is 38 terpenes using Method SOP					matography – Mass Spectrometer) which can Pending
LPHA-PINENE	0.007	0.462	0.0462							
LPHA-TERPINENE	0.007	ND	ND							
ETA-MYRCENE	0.007	2.413	0.2413							
ETA-PINENE	0.007	1.464	0.1464							
BORNEOL	0.013	ND	ND							
AMPHENE	0.007	ND	ND							
AMPHOR	0.013	ND	ND							
ARYOPHYLLENE OXIDE	0.007	0.221	0.0221							
EDROL	0.007	ND	ND							
ALPHA-BISABOLOL	0.007	0.817	0.0817							
LPHA-CEDRENE	0.007	ND	ND							
IS-NEROLIDOL	0.007	ND	ND							
3-CARENE	0.007	ND	ND							
FENCHYL ALCOHOL	0.007	ND	ND							
otal (%)			1.7697							

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, pm=Parts Per Million, ppb=Parts Per Billion. Limit to Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director State License # n/a ISO Accreditation # 17025:2017 Lucingurson Signature 09/02/22

Kaycha Labs

6000 mg Full Spectrum N/A Matrix : Derivative

PASSED

Certificate of Analysis

Carmens Medicinals

1241 Stirling Rd Suite 101 Dania Beach , FL, 33004, US Telephone: (888) 328-6445 Email: info@carmensmedicinals.com

Sample : KN20825007-001 Harvest/Lot ID: 13623 Batch# : 0082-2ISX Sampled : 08/19/22 Ordered : 08/19/22

Sample Size Received : 30 ml Total Batch Size : N/A Completed : 09/02/22 Expires: 09/02/23 Sample Method : SOP Client Method

Page 3 of 6

PASSED

0

Pesticides

Pesticide		LOD	Units	Action Level	Pass/Fail	Result
ABAMECTIN B1A		0.01	ppm	0.3	PASS	ND
ACEPHATE		0.01	ppm	3	PASS	ND
ACEQUINOCYL		0.01	ppm	2	PASS	ND
ACETAMIPRID		0.01	ppm	3	PASS	ND
ALDICARB		0.01	ppm	0.1	PASS	ND
AZOXYSTROBIN		0.01	ppm	3	PASS	ND
BIFENAZATE		0.01	ppm	3	PASS	ND
BIFENTHRIN		0.01	ppm	0.5	PASS	ND
BOSCALID		0.01	ppm	3	PASS	ND
CARBARYL		0.01	ppm	0.5	PASS	ND
CARBOFURAN		0.01	ppm	0.1	PASS	ND
CHLORANTRANILIP	ROLE	0.01	ppm	3	PASS	ND
CHLORMEQUAT CH	LORIDE	0.01	ppm	3	PASS	ND
CHLORPYRIFOS		0.01	ppm	0.1	PASS	ND
CLOFENTEZINE		0.01	ppm	0.5	PASS	ND
COUMAPHOS		0.01	ppm	0.1	PASS	ND
CYPERMETHRIN		0.01	ppm	1	PASS	ND
DAMINOZIDE		0.01	ppm	0.1	PASS	ND
DIAZANON		0.01	ppm	0.2	PASS	ND
DICHLORVOS		0.01	ppm	0.1	PASS	ND
DIMETHOATE		0.01	ppm	0.1	PASS	ND
DIMETHOMORPH		0.01	ppm	3	PASS	ND
ETHOPROPHOS		0.01	ppm	0.1	PASS	ND
ETOFENPROX		0.01	ppm	0.1	PASS	ND
ETOXAZOLE		0.01	ppm	1.5	PASS	ND
FENHEXAMID		0.01	ppm	3	PASS	ND
FENOXYCARB		0.01	ppm	0.1	PASS	ND
FENPYROXIMATE		0.01	ppm	2	PASS	ND
FIPRONIL		0.01	ppm	0.1	PASS	ND
FLONICAMID		0.01	ppm	2	PASS	ND
FLUDIOXONIL		0.01	ppm	3	PASS	ND
HEXYTHIAZOX		0.01	ppm	2	PASS	ND
IMAZALIL		0.01	ppm	0.1	PASS	ND
IMIDACLOPRID		0.01	ppm	3	PASS	ND
KRESOXIM-METHYL		0.01	ppm	1	PASS	ND
MALATHION		0.01	ppm	2	PASS	ND
METALAXYL		0.01	ppm	3	PASS	ND
METHIOCARB		0.01	ppm	0.1	PASS	ND
METHOMYL		0.01	ppm	0.1	PASS	ND
MEVINPHOS		0.01	ppm	0.1	PASS	ND
MYCLOBUTANIL		0.01	ppm	3	PASS	ND
NALED		0.01	ppm	0.5	PASS	ND
OXAMYL		0.01	ppm	0.5	PASS	ND
PACLOBUTRAZOL		0.01	ppm	0.1	PASS	ND
PERMETHRINS		0.01	ppm	1	PASS	ND
PHOSMET		0.01	ppm	0.2	PASS	ND
I HOSPILI		0.01		0.12		

		Level		
0.01	ppm	3	PASS	ND
0.01	ppm	0.4	PASS	ND
0.01	ppm	1	PASS	ND
0.01	ppm	0.1	PASS	ND
0.01	ppm	1	PASS	ND
0.01	ppm	3	PASS	ND
0.01	ppm	3	PASS	ND
0.01	ppm	3	PASS	ND
0.01	ppm	3	PASS	ND
0.01	ppm	0.1	PASS	ND
0.01	ppm	1	PASS	ND
0.01	ppm	0.1	PASS	ND
0.01	ppm	1	PASS	ND
0.01	ppm	3	PASS	ND
0.01	ppm	3	PASS	ND
			Extracted 2803	by:
Weight: 0.5119g 0.5019g	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 ppm 0.01 ppm	0.01 ppm 0.1 0.01 ppm 1 0.01 ppm 3 0.01 ppm 3 0.01 ppm 3 0.01 ppm 3 0.01 ppm 3 0.01 ppm 0.1 0.01 ppm 0.1 0.01 ppm 1 0.01 ppm 1 0.01 ppm 3 0.01 ppm 1 0.01 ppm 0.1 0.01 ppm 3 0.01 ppm 0.1 0.01 ppm 0.1 0.01 ppm 3 0.01 ppm 0.1 0.01 ppm 1 0.01 ppm 3 0.01 ppm 0.1 0.01 ppm 3 0.01 ppm 1 0.01 ppm 1 0.01 ppm 3 0.01 ppm 3 0.	0.01 ppm 0.1 PASS 0.01 ppm 0.1 PASS 0.01 ppm 1 PASS 0.01 ppm 3 PASS 0.01 ppm 0.1 PASS 0.01 ppm 0.1 PASS 0.01 ppm 1 PASS 0.01 ppm 1 PASS 0.01 ppm 3

II-125 Mycoti

Running on : N/A

Dilution : 0.01 Reagent : 062422.02; 110521.04; 060122.01; 050222.R30

Consumables : 294033242; K130252]; n/a; 21332M0; n/a; 241572; 210419634 Pipette : E-VWR-116; E-VWR-118; E-VWR-119

Pesticide analysis is performed using LC-MSMS which can quantify down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 61 Pesticides. (Methods: SOP.T.30.065 Sample Preparation for Pesticides Analysis via LCMSMS and SOP.T40.065 Procedure for Pesticide Quantification Using LCMSMS). *Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detectod, NA=Not Analyzed, pm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Dire State License # n/a ISO Accreditation # 17025:2017

Sulinguse

09/02/22

Signed On

Signature

Kaycha Labs

6000 mg Full Spectrum N/A Matrix : Derivative

PASSED

Certificate of Analysis

Carmens Medicinals

1241 Stirling Rd Suite 101 Dania Beach , FL, 33004, US Telephone: (888) 328-6445 Email: info@carmensmedicinals.com Sample : KN20825007-001 Harvest/Lot ID: 13623 Batch# : 0082-2ISX Sampled : 08/19/22 Ordered : 08/19/22

Sample Size Received : 30 ml Total Batch Size : N/A Completed : 09/02/22 Expires: 09/02/23 Sample Method : SOP Client Method

Page 4 of 6

PASSED

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result
PROPANE	500	ppm	2100	PASS	ND
BUTANES (N-BUTANE)	500	ppm	2000	PASS	ND
METHANOL	25	ppm	3000	PASS	ND
THYLENE OXIDE	0.5	ppm	5	PASS	ND
PENTANES (N-PENTANE)	75	ppm	5000	PASS	ND
THANOL	500	ppm	5000	PASS	ND
THYL ETHER	50	ppm	5000	PASS	ND
.1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
CETONE	75	ppm	5000	PASS	ND
-PROPANOL	50	ppm	500	PASS	ND
CETONITRILE	6	ppm	410	PASS	ND
DICHLOROMETHANE	12.5	ppm	600	PASS	ND
HEXANE	25	ppm	290	PASS	ND
THYL ACETATE	40	ppm	5000	PASS	ND
HLOROFORM	0.2	ppm	60	PASS	ND
ENZENE	0.1	ppm	2	PASS	ND
,2-DICHLOROETHANE	0.2	ppm	5	PASS	ND
EPTANE	500	ppm	5000	PASS	ND
RICHLOROETHYLENE	2.5	ppm	80	PASS	ND
OLUENE	15	ppm	890	PASS	ND
TOTAL XYLENES - M, P & O - DIMETHYLBENZENE	15	ppm	2170	PASS	ND
nalyzed by: Weig /A N/A	ght:	Extraction date: N/A		Extracted by N/A	
nalysis Method : SOP.T.40.032 nalytical Batch : KN002819SOL strument Used : E-SHI-106 Residual Solvents unning on : N/A			Reviewed On : 09/02/22 Batch Date : 08/25/22 0		X X

Consumables : N/A

Pipette : N/A

Residual solvents analysis is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 22 residual solvents. (Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS). *Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detectod, NA=Not Analyzed, pm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director State License # n/a ISO Accreditation # 17025:2017

Julugusa Signature 09/02/22

Kaycha Labs

6000 mg Full Spectrum N/A Matrix : Derivative

PASSED

Certificate of Analysis

Carmens Medicinals

1241 Stirling Rd Suite 101 Dania Beach , FL, 33004, US Telephone: (888) 328-6445 Email: info@carmensmedicinals.com

Microbial

Sample : KN20825007-001 Harvest/Lot ID: 13623 Batch# : 0082-2ISX Sampled : 08/19/22 Ordered : 08/19/22

PASSED

Sample Size Received : 30 ml Total Batch Size : N/A Completed : 09/02/22 Expires: 09/02/23 Sample Method : SOP Client Method

Page	5	of	6	

Ę

Analyte		LOD	Units	Result	Pass / Fail	Action Level
SCHERICHIA CO	LI SHIGELLA			Not Present	PASS	
SALMONELLA SPI	CIFIC GENE			Not Present	PASS	
ASPERGILLUS FL/	AVUS			Not Present	PASS	
ASPERGILLUS FU	MIGATUS			Not Present	PASS	
ASPERGILLUS NIC	GER			Not Present	PASS	
ASPERGILLUS TERREUS				Not Present	PASS	
nalyzed by: 657, 2368	Weight: 1.0327g		ion date: 2 15:41:25		Extracted I 2657	oy:
nalysis Method : S	OP.T.40.043					
nalytical Batch : Ki				On : 09/01/22		
nstrument Used : M unning on : N/A	icro E-HEW-069		Batch Date	e:08/25/22 12	2:58:33	
ilution : N/A						
nalytical Batch : Ki nstrument Used : M unning on : N/A			On : 09/01/22 e : 08/25/22 12			

Pipette : N/A

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus fiumigatus, Aspergillus flavus, Aspergillus niger, or Aspergillus terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing.

Mycotoxins PASSED Pass / Analyte LOD Units Result Action Fail Level **AFLATOXIN G2** 0.002 ND PASS 0.02 ppm AFLATOXIN G1 PASS 0.002 ND mag 0.02 AFLATOXIN B2 PASS 0.002 ppm ND 0.02 AFLATOXIN B1 0.002 ppm ND PASS 0.02 **OCHRATOXIN A+** 0.002 ppm ND PASS 0.02 TOTAL MYCOTOXINS 0.002 ND PASS 0.02 ppm Analyzed by: Weight: Extraction date: Extracted by: 2803.12 0.5119g 09/01/22 21:59:56 2803 Analysis Method : SOP.T.30.060, SOP.T.40.060 Analytical Batch : KN002857MYC Reviewed On : 09/01/22 22:04:46 Batch Date : 09/01/22 21:07:28 Instrument Used : E-SHI-125 Mycotoxins Running on : N/A Dilution : N/A Reagent : N/A Consumables : N/A Pipette : N/A Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.060 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMSMS. LOQ 5.0 ppb). *Based on FL action limits.

Heavy Metals PASSED Hg LOD Units Pass / Action Metal Result Level Fail ppm ARSENIC-AS 0.02 ND PASS 15 CADMIUM-CD 0.02 ND PASS 0.5 ppm MERCURY-HG PASS 0.02 ND 3 ppm LEAD-PB 0.02 ND PASS 0.5 ppm Analyzed by: Extraction date Extracted by: Weight: 0.2714g 138, 12 08/26/22 16:07:52 138 Analysis Method : SOP T 40 050 SOP T 30 052 Analytical Batch : KN002823HEA Reviewed On : 08/31/22 21:11:26 Instrument Used : Metals ICP/MS Batch Date : 08/25/22 11:52:33 Running on : N/A Dilution : 50 Reagent : N/A Consumables : N/A Pipette : N/A

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen down to single digit ppb concentrations for regulated heavy metals using Method SOP.T.30.082 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.082TN Heavy Metals Analysis via ICP-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RDD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

State License # n/a ISO Accreditation # 17025:2017 Signature

09/02/22

Kaycha Labs

6000 mg Full Spectrum N/A Matrix : Derivative

PASSED

Certificate of Analysis

Carmens Medicinals

1241 Stirling Rd Suite 101 Dania Beach , FL, 33004, US Telephone: (888) 328-6445 Email: info@carmensmedicinals.com

Sample : KN20825007-001 Harvest/Lot ID: 13623 Batch# : 0082-2ISX Sampled : 08/19/22 Ordered : 08/19/22

PASSED

Sample Size Received : 30 ml Total Batch Size : N/A Completed : 09/02/22 Expires: 09/02/23 Sample Method : SOP Client Method

Filth/Foreign Material

	LOD	Units	Result	P/F	Action Level	
Filth and Foreign Material		detect/g	ND	PASS	3	
Weight: 0.512g			5	Extr 265	racted by: 7	
N002824FIL		Revie				
	Weight: 0.512g SOP.T.30.074, SC N002824FIL	Material 1 Weight: Extr. 0.512g 08/2 SOP.T.30.074, SOP.T.40.0	Waterial 1 detect/g Weight: Extraction date: 08/25/22 16:22:21 0:512g 08/25/22 16:22:21 08/25/22 16:22:21 SOP.T.30.074, SOP.T.40.074 Review Review	Waterial 1 detect/g ND Weight: Extraction date: 08/25/22 16:22:25 GOP.T.30.074, SOP.T.40.074 Reviewed On : Reviewed On :	Waterial 1 detect/g ND PASS Weight: Extraction date: Extra 08/25/22 16:22:25 265 GOP.T.30.074, SOP.T.40.074 Reviewed On: 08/29/22 10:02/22 10:02/22 10:02/22	

This includes but is not limited to hair, insects, feces, packaging contaminants, and manufacturing waste and by-products. A SW-2T13 Stereo Microscope is use for inspection.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detectod, NA=Not Analyzed, pm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Dire State License # n/a

hilingues ISO Accreditation # 17025:2017 Signature

09/02/22